By Pravin_pasare
Posted 3 years ago

Slab track VS Ballasted Track

Rail Tracks

banner image






Maintenance Input.

Frequent maintenance & non-uniform degradation

Less maintenance for geometry.


Cost comparison

Relatively low construction costs but higher life cycle cost.

Relatively high construction cost but lower life cycle cost.



High elasticity due to ballast.

Elasticity is achieved through use of rubber pads and other artificial materials.


Riding Comfort.

Good riding comfort at speeds up to 250 – 280 kmph.

Excellent riding comfort

even at speeds greater

than 250 kmph.



Life expectation

(20 yrs)




Over time, the track tends to “float”, in both longitudinal and lateral directions, as a result of

Non-linear, irreversible behaviour of the materials.

No such problem.


Lateral resistance

Limited  compensated

Lateral acceleration in curves,

due to the limited lateral

resistance offered by the ballast.

High lateral resistance to the track which allows future increase in speeds in combination with tilting

coach technology.



Relatively High noise

Relatively low noise and vibration nuisance.


Churning up of


Ballast can be churned up at high speeds, causing serious damage

to rails and wheels.

No such damage to rails and wheels.


Construction cost of



Ballast is relatively heavy, leading to an increase in the costs of

building bridges and viaducts if they are to carry a continuous

ballasted track.

Less cost of construction of bridges and viaducts due to lower dead weight of the ballast-less track.


Construction Depth.

Depth of Ballasted track is relatively high, and this has direct consequences for tunnel diameters and for access points.

Reduced height.

To continue reading Register Now or Login

Suggested Articles for you

Esat Kepenekli - Posted 3 years ago

A Solution to the Impacts of Climate Change on Rail Infrastructure

The ability to detect the presence of a train on a particular stretch of track is a key enabler for automatic signalling, and hence modern train control. There are two types of technology generally used for train detection, a track circuit or an axle counter. Track Circuits also have a side function (usually without any commitments) to detect complete rail breaks to an extent with the employed impedance bonds, but they are not able to catch many of the broken rail cases, and the recent trend is to use axle counters instead of track circuits. There are many benefits of using axle counters in comparison to track circuits, like lower life-cycle costs, higher reliability, and better management of long sections. It should be noted that the widespread use of axle counters may provide great benefits for interlocking, however, the axle counters do not provide any information at all for whether the rail physical condition is in a safe state for train traffic or not. This means that when we start using axle counters, verification of rail condition with an additional monitoring system becomes vital to know whether there are any defects in the rails. If this aspect is neglected somehow, it seems quite likely that this can lead to disastrous consequences both for ASSET & PASSENGER SAFETY. The World’s Best Railway Infrastructure Owners are aware of the RISKS and they are searching for an Innovative & Accurate SOLUTION to the possible “Broken Rail” issues. Broken Rail Detection (BRD) systems are being offered to close the safety gaps related to the rail integrity monitoring aspects. And, early detection of rail flaws is being more vital each day, due to increased speeds in rail transportation, either for passenger or freight trains. If track circuits are used at a railway line, it is surely needed to deploy a supportive BRD system to close the safety gaps, however, if axle-counters are used, a reliable BRD system definitely becomes a “MUST-HAVE” for safe rail transport operation. The rail-mounted RailAcoustic® solution validates the health of the rail, identifies any breaks as soon as it occurs, and accordingly notifies the rail status immediately for the train dispatcher. RailAcoustic® thus increases throughput as tracks can be verified for operation instead of being blocked for days due to derailment accidents that can also have severe consequences. RailAcoustic® is designed for easy installation and track maintenance through the clamp mechanisms attached to the rail bottom without opening any holes or drilling on the rails. Its receivers identify even the partial rail cracks before a conventional track circuit could detect an electrical disconnect in the rail. Any complete break or a major partial break in the rail can be identified with a very accurate location within 100 m precision for safe train operation and ease of track maintenance. Rail-mounted RailAcoustic® components report to the back-office system to verify any detection. Messages are then passed to the signaling system or train control to take immediate action on the approaching or next trains passing the located breaks. This way, RailAcoustic® offers a near real-time detection and verification of breaks in rails – for safer and more profitable operation. The RailAcoustic® technology is demonstrated at High-Speed-Rail (HSR). The system is successfully in operation on a 90 km double-track stretch of the TCDD Konya High-Speed line, since 2018. Now, the installation and commissioning of the system continue for an 11 tunnel slab-track part (37 km) of the Sivas High-Speed line, to be integrated into the Siemens-provided CTC system. It is a proven, supportive, safety “enhancement” tool that does not need a SIL Certification in the short term, since it is not a component of mainline signalling but rather a very critical safety improvement for monitoring the RAIL and TRACK CONDITION. It solves a very critical issue in the railway industry with its methodology patented in the US, EU, China, Japan, India & Turkey, and has a great technical potential in the global rail industry subject to potential collaboration opportunities in different territories with diverse market needs. It has train monitoring abilities, which railway operators can benefit a lot. It is a result of 10 years-long research and development efforts that had been put in operation after extensive acceptance tests during the trial and commissioning phases of the client. The technology is unique and does not have any reasonable solution alternatives around the world offering a complete and stand-alone solution for high-speed railway lines, modernized conventional lines, and metro lines especially with continuously welded rails and limited ballast rock contact at the rail bottoms. Actually, as per the new approach with increased speed expectations in rail transport; it is obvious that a train should not be released to a line before being sure that especially the close segments of the tracks are safe for traffic. Only, then after "verifying the health status of rails and tracks", the interlocking and signalling come up to the fore, for a safe train presence monitoring and plotting of a route!  RailAcoustic® detects defects such as complete rail breaks and partial rail cracks, as well as other abnormalities like ballast washouts, floods, and landslides  The system 7/24 continuously senses: Partial Cracks on the Rails Complete Rail Breaks Significant Internal Defects Train Flat-Wheels Train Movement (with precise Speed info) Rail & Environmental Temperature Floods Landslides Washouts Buckled Rails Derailed Cars (only for low-speed freight rolling stock) The inventor and manufacturer of the system is Enekom, a technology company that is ready to be in collaboration with any parties, to enhance the safety of railways for protecting the assets and people. Please contact for further information: Esat Kepenekli – Contract and Commercial Manager Cell: +90 - 537 609 6498 (WhatsApp) Email: esatkepenekli (at)

Read Full Article

Sharon Yin - Posted 2 years ago

Development and evolution of trackgauge measurement tools

Development and evolution of trackgauge measurement tools. From tap-analogue track gauge-digital track gauge-digital rolling gauge and track geometry trolley. Each upgrade will bring unexpected convenience to railway maintenance work . Which of the following tools are you using?  

Read Full Article

Joanie Zhao - Posted one year ago

How to choose a suitable rail wrench?

Advantages of Lithium Battery Rail Wrench: Environmental Friendly: Lithium battery rail wrenches are powered by rechargeable batteries, which eliminates the need for fossil fuels and reduces emissions. This makes them more environmentally friendly compared to internal combustion rail wrenches. Quieter Operation: Lithium battery rail wrenches produce significantly less noise compared to internal combustion rail wrenches. This makes them suitable for use in noise-sensitive areas, such as residential neighborhoods or urban environments. Lower Maintenance: Lithium battery rail wrenches have fewer moving parts compared to internal combustion rail wrenches, which reduces the maintenance requirements. There is no need for oil changes, spark plug replacements, or other regular maintenance tasks associated with internal combustion engines. Lightweight and Portable: Lithium battery rail wrenches are typically lighter and more compact than their internal combustion counterparts. This makes them easier to handle and transport, providing increased maneuverability and convenience. Instant Torque: Lithium battery rail wrenches provide instant torque as soon as they are powered on, allowing for quick and efficient tightening or loosening of rail fasteners. There is no need to wait for the engine to warm up or reach optimal operating conditions. Disadvantages of Lithium Battery Rail Wrench: Limited Battery Life: Lithium battery rail wrenches have a finite battery life, which means they can only operate for a certain duration before needing to be recharged. This can be a limitation in situations where extended use is required without access to charging infrastructure. Lower Power Output: While lithium battery rail wrenches have improved over the years, they still generally have lower power output compared to internal combustion rail wrenches. This can make them less suitable for heavy-duty applications or when dealing with stubborn rail fasteners. Advantages of Internal Combustion Rail Wrench: High Power Output: Internal combustion rail wrenches are known for their high torque and power output, making them suitable for heavy-duty applications. They can easily handle stubborn or corroded rail fasteners. Long Operating Time: Internal combustion rail wrenches can operate continuously as long as there is fuel available. This makes them ideal for situations where extended use is required without the need for frequent refueling or recharging. Established Infrastructure: Internal combustion rail wrenches benefit from the existing fueling infrastructure, as gasoline or diesel fuel is readily available in many locations. This ensures easy accessibility and convenience. Disadvantages of Internal Combustion Rail Wrench: Emissions and Noise: Internal combustion rail wrenches generate exhaust emissions and produce significant noise during operation. This can be a disadvantage in environmentally sensitive areas or when working in noise-restricted locations. Higher Maintenance: Internal combustion rail wrenches have more complex mechanisms and require regular maintenance, including oil changes, spark plug replacements, and other engine-related tasks. This increases the overall maintenance cost and effort. Heavier and Bulkier: Internal combustion rail wrenches are generally heavier and bulkier compared to lithium battery rail wrenches. This can make them more challenging to handle and transport, limiting maneuverability in tight spaces or difficult terrain. Start-Up Time: Internal combustion rail wrenches require a warm-up period before reaching optimal operating conditions. This can result in a delay when starting work, especially in colder climates. Ultimately, the choice between a lithium battery rail wrench and an internal combustion rail wrench depends on the specific requirements of the job, considering factors such as power needs, duration of use, environmental considerations, and available infrastructure.

Read Full Article